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Application of Kochints Method to the Study of the Equilibrium
State of Two-Parameter Vortex Streets
B. Dolapchiev
Doklady AN USSR- Vol. LXXVIII, #1, 1951
TRunslated by Morris D. Friedman
In studying the question of the stability of vortex traiads
with staggered vortices when there occurs "group displacements"
(for example, alternating) or in finding the velecity of asymmetric
trails we always encounter the effect of obligque flow of trails.
This means that the axis of the vortex system, while maintaining a
direction parallel to the general motion, with the mmx course of
time, moves infinitely far from the axis of symmetry of the stream-
lines of a body (cylinder). 1In the case of stagzered trails, dis-
placed alternately, we obtain for the law of motion, for example

for vortices of the upper chain with even index, the expression [1 ,2]

$o1'(8) = _§_o_'__~2:_§;' +-é7-’-{(7o' +71") - (gom + 71")}’6 W

+ %[e"t(a'cosvt + b"sin2 t)
+ e"‘t(a'cosyt + b"sin)lt)]
(i =0,1,2...,M=0 =X = hfg % 0.281)
In the case of asymmetric trails, oblique flow arises from the
fact that for the secondary component V, of the felocity W of
any vortex has the value

v, =-T sin 2T 50, =T sinh 2%7 (2)
41 cosh 21l - cos AW 47 cosh 8XT - cos AW

which for \# 0, 3 also differs from zero. On the basis of the
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above, it is possible to assert that not only asymmetric trails
but also staggered vortex trails even when they satisfy the Karman
condition 3]
sinh X7 = 1 (3)
X = h/7 ere unstable in so far as it is possible for us to find such
special displacements which produce obligue motion of it. Actuelly,
in the specified cases the general definition of stability is not
fulfilled, according to which it is necessary in order that "for
arbitrarily small displacemeénts of all or some vortices in the initial
moment of time, all the vortices, with the lapse of time, remain near
that position which they would have had if they moved without also
undergoing displacemént". Departing from this general definition,
let usa ssume, say, tne possibility of oblique travel of the vortex
system, for example, of asymmetric trails., We must study its stab-
ility or instability with respect to a more narrow definition of
stability which was formulated by Kochin [3] as: "Let us call the
vortex system stable if for any positive number § , as smdll as
desired, it is possible to choose such a positive number § that
with the vortex displacements not exceeding the guantity § at
the initial moment of time, the distance between any two vortices
in all the time of the motion of the system will be different from
the distance between these vortices in the undistmmebed state not
larger ¥ than § ,"
Thus, we must consider the quéstion of the stability or instab-

ility of asymmetric vortex trails in the light of the abofe &finition



de

since as regards staggered trails we established earliér [l,é] that
they are stable by condition (3) even for displacements of second
order. However, as deduced by Kochin [3) following the method of
Liapunov, staggered treils with the attraction displacemént of fourth
order proved unstable in spite of condition (3) being fulfilled.
The analogy between the behavior of asymmetric and staggered trails
is established here according to Kochin's method; what is more valu-
able, in the followlng work we apply asymmetric trails as trsnsitions
to Karman staggered trails when they are “made stable" in the laster
stages of the motion of two oscillating vortex chains. The complete
analogy, which we establish in our generalized study, gives us the
right to sonsider asymmetric trails for conditdons of stability
different from (3) such which, just the same as the Karman trail
are "less uastable". Therefore, it is possible to expect that an a-
symmetric trail in spite of a brief obligue flow transforms without
collapse into a trail with vortices in staggered arrapgement.

Now we start from the alternate displacement of the vortex
trails with asymmetric vortex arrangement whose motion is governed

by the system of differential @® equations [3] :
1

azf = I Scot w (29%-2,') - cot W _(z,'-2 ") - cot T (z, r-2,")
@ Tul =t o* IR T L ¢f }
d® ‘

2 = [ Ccot W _(z,1-2.") - cot T (z,'~2,") - cot T _(z,'~z,")

it 0 21 ¢ 1 v ¢ 1 ¢ ¢ }
- (4)
dz " _

1 = ' (ot T (z,7-2.1) - cotT (z,"-2z,') - cot T (z "-z,")
&*.  u v 1t zv 1 ¢ P }

dzy r icot W (z5"-21")

°°§;E_(22"‘22')
dt 41i 1 PAN

cot T (z,"-z,")
T (gm0}
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while the non-displaced vortex chains move with the velocity (2).
The asymmetric initial position of the vortex we fix by the formules
210" = @ +3ih; 24" = -d - &ib; Zog' = l+d+ kih; Zog" =] - d - 3ih (5)

For brevity, let us put T t=71 and introduce corresponding
817
with this for the k-th affix of the alternate displeced vortex the ex-

pression

2, = _é_':z'__(ﬁA -V )b+ 3, + 2L (6)

m
in which EA end VA are, with the accuracy of a known factor, the
components of (&); and f is the affix of the displacement of the

k-th vortex; the system (4) assumes the form

i = {tan(fl Tim) + cot(F 1= T+ AT+ 3 ¥T)

d
® + ot 4 72"+>\1T+%W-l7")-2(55-ﬁa)}
B.‘.‘: = it&n(rl '&v) + cct(fl ot AT4d €T )
avt -
+ cot('fl"- vgzl-.-)\\'l'-{-%\('“‘+§'“ )'2(UA'iVA)} )
7
43" v 5ot (8- %/ + AT HEKT) v
dT i{av\(? -5 s ok (S =Sy +AT +1—Kn+1-17) -1 UA-IVAB}

53§ baulel ) + (ST ST AT A K0)
ot " + cot (S 5.+ ’}\-,7.,,;_;“,-_%

y-2(Un-2 Un) §
The integral of this system is '?1' - ‘§2' + fl" - 'fz" =C

end the requirement of single-valuedness of the £ vortex of basis

form as a consequence of which C = 0, leads us to the relstion

f2| - S‘lt = fln - 72" or 'fzn - 'flu - 2 .

In order to obtzin the most general solution of the system (7)
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we consider the obtainded equation relating to both series and we

put

n
u

2(f2' - fl') « 2(f1" "32")
2(‘,’2" - -fl') (5 2(?1" - fg')

Then (7) is transformed into

il
1}

43 = 41 sigp 1 - 1 >
at cosk + cos(ﬁ cos(s + a
- (8)
df =4l sing [ 1 - 1)
d< \cos X+ cosﬂ cos/ -al/

where a = cos( AT+ ixT¥), For A= %3, it is immedistely evident
that the system reduces to the Kochin [5] system for stabllity, ac-
cording to formula (3) of staggered Karman trails. In order to
study the system (8) let us retein in it only terms which are linear

with respect to A ang ﬂ o In the same way the system (8) becomes
8

ik _=-2il-ag ; dg‘ =211+ a8 (9)
dt l+e d l-a

and the conjugate

g_«<_=211-3(§; dg =211+

{ X (10)
ax< l1+a’ a< 1l -

SRR BN

The grstems (9) &and (10) are sgtisfied by the particulsr solu-
tions L = Me“’t; L = Ne“’t; [}= Re wt; /? = se“?Y  which lead us
to the characteristic system of algepraic equations

Mw-LS=0; Rw~KN=0; Nw+LR=0; Sw +KM=0 (11)

homogeneous with respect to M2 N, R and S . Here we let

K=-21;_-t§;f=2ij__;L=‘2i}:£5f=21.; (12)
l-a 1-8 l+a l+a

Elimination of M, Ny, R, and 8 from (11) 1leuds us to the egaation

wl+ (1K + TK)w® + LIKK = 0 (13)
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The roots of the corresponding guadratic equation if € = ‘02
are given by the expressions
€, =4 (1+a)(1-8) = 4@ - la) - 21 sin T sinh\("\T>
(1-a) (1+s) - \al + 21 sin A\TWsinh XT
(14)
£ =

o = 4 gl-a)(1+E) = 4@ - Va) + 21 sin \TW sinh XV
(1+a) (1=a) = - o) - 21 sin WWsinhXW

since a - @ = -2i sin MM sinhX T = -Qi. For the roots of w, letting
RE = (1 - \a\)‘a + Q2 , We obtaln

“1,2,5,4 = ié— (1 - el £ i) (15)

If (1 - \a\) # 0, then two of the roots of (13) will have
positive reel part as a consequence of which the solution o = o,

(5 = 0 will be an unsteble solution of the systems (9) and (10) .
If, nowever Ya\ =1, or what is the same

\cos(WT+ 1%W)| =1 (18)
then we gain find the condition

sinh X T = sin \T (17)
which 1s necessary for the stebility of asymmetric vortex trails for
a finite displecement of all vortices.

But now equation (13) has two pure imaginary @ouble roots, since
from R &and (16) it follows that R =¢ . Therefore (15) is reduced
to @ =+ 2i, In the same way, for asymmetric trails we encounter the
case when the first approximation is #nsufficient to maintain that the
solution o =0, (3 = 0 is stable. However, the obteined necesssry
condition of stebility (17) from which for > = } the Xarman condi-
tion results, gives us the right to maintsin, together with Kochin (4)

that "to a certain degree (17) maintains its velue since it charecterizes
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those arrangements of vortices which poseess the leas$tinstabllity
in eomparison with a1l other vortex arraggements".

As regards leter investigations having as thiir eim to esteblish
by the method of Liespunov-Kochin the instability also of asymmetric
trails, we only observe that for these generalized trails there is

. obteined functions completely analogumus to those which Kochin 3 uses:

F(-(,p)=£1n\(cos°(—_a)1cos:g+a)\ (18)

cos¥ + cos

where ol = ol + 14, , (5 =(&l + i(ﬂz snd the complex constant is
determined by (8) and condition (17) . Thesystem of differentisl
equations (8) are now replaced by the % eyuations

d = 3F; 0v=- 3F; o = IF; Pvr=-
IT P X o @t v AT

with the first integrel F = constant. The rest of the reasoning

(19)

2 F
7 X

corresponds completely with Kochin's investigetion.
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